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In order to integrate quantum mechanics into geometrical theories of physics,
new quantities must be included in the description of the infinitesimal structure
of space-time. Using gauge transformations, Weyl’s coefficients of connection are
generalized to include not just the metric tensor and the electromagnetic poten-
tial, but the wave function as well. As the field equations are developed, it is
found that invariance of the scalar of curvature under the appropriate gauge and
coordinate transformations implies the Klein-Gordon equation. Since the terms
required for invariance correspond with known quantum effects, no invariant
classical limit is possible. The selection of appropriate fixed gauges and the
elimination of small terms does lead directly to the Hamilton--Jacobi equations.
Trajectories are defined for all cases, and as an example, the Lorentz force law is
derived from these trajectories. The probability density is related to the particle
trajectories and a conformal parameter of an additional metric tensor. Because of
the gauge transformation, gravitational, electromagnetic, and quantum effects
must be described as aspects of the same geometrical structure.

1. INTRODUCTION

The number of unified field theories advanced in the literature is large.
The need is great as no known single theory predicts or explains everything
observed. Because of the large number of attempts, one might conclude that
such a theory is easy to write. On the contrary, it is no simple problem and
many contesting points of view have remained since the issues were attacked
earlier in this century. The only possible conciliation is further discussion,
and yet, because the problem has remained incompletely solved for so long,
an irrational faith is needed to believe that any solution at all can be found.
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An important step to resolve some of the conflicts that remain, is to put
theories based on quantum mechanics and theories based on geometrical
gravitation together in a consistent physically correct way. The manner to
do this is uncertain since there are no glaring contradictory experimental
data which might thrust inadequacies of the present theories into the open.
Progress is needed but there are few clues to direct the improvements. There
are no constraints to reduce and give form to the set of all possibilities.
Some new assumption, right or wrong, is needed within which to discover
new laws and relationships. It is for these reasons that the choice to use
geometrical descriptions is made.

Certain opportunities are opened up by the geometrical assumption.
First of all, the separation of physics into kinematics and dynamics may
end. If the mass is allowed to become a parameter controlling the type and
shape of the space in which the particles travel, then the motion itself, fixed
by the shape of a coordinatelike structure can be considered both as a
system of dynamics and as a system of kinematics. The difference is only in
the way the interpretation is made.

Another favorable possibility is the separation of statistical effects and
simple mechanical motion. In a geometrical theory, particles must have
trajectories and the trajectories themselves must be assigned a distribution
only after they are calculated. There is and must be an ultimate physical
interpretation in terms of displacements and directed motion. The geometri-
cal conceptualization is sufficiently straightforward that a statistical inter-
pretation cannot be concealed.

A central difficulty is also created by the geometrical assumption.
Quantum mechanics, as it has been developed and applied, has not been
treated as a geometrical theory. One must either quantize gravity or geome-
trize quanta. The second option, selected here, might be a viable alternative.

The complexities of a complete unified theory are probably great, so
only the simplest issues are addressed directly, no second quantization is
used, and only one-particle equations are attempted. This single particle
moves in, and is affected by three fields. The first of these is the gravita-
tional field. For purposes of this article, all gravitational effects can be
derived from a single macroscopic tensor g,, which is the classical metric
tensor. The electromagnetic field is also included because it is important for
correctly deriving the form of the geometrical structure. It is introduced by
way of the potential function ¢,. The third field, the wave function ¢,
completes the structure that is needed to define particle motion. ¥ is a scalar
for this discussion; spinor effects are ignored.

All of these fields are produced by other particles which are treated as
simple classical point particles so as to provide well-defined external inter-
actions.
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2. WEYL’S THEORY EXTENDED?

Weyl’s original theory uses concepts from non-Riemannian geometry
(Eisenhart, 1972) to integrate electrodynamics into general relativity. Many
of these concepts are useful here. The first of these is the conventional
vector. Such a vector is generated from a small coordinate displacement.
These vectors are the link to the physical ideas of magnitude and direction.
The relationship between different basis vector systems at different points is
defined and described by formal mathematical functions called connections.
For nearby points, the connection I‘Iﬁ is the linear part of the effect of a
displacement of a vector Ax* at a point P to a new point P’,

Ax¥ =Ax"TE dx*+Ax* (1)

where the displacement vector is dx*. (The Einstein summation convention
holds.) The two vectors Ax* and Ax* are equal for dx* zero. Equation (1),
to first order, defines the connections.

Various types of geometry are obtained by choosing different restric-
tions on the connections. The first important question is, given two vectors
A and B at point P, will 4 displaced to the vertex of B point to the same
place as B displaced to the vertex of A? A simple calculation following
equation (1) shows that this will happen only if the connections are
symmetric in the lower two indices. Since it is not necessary to use
nonsymmetric connections for a description of the physical effects dis-
cussed, symmetry is assumed and one can make up a series of coordinate
displacements and expect to arrive at the same final point irrespective of the
order of execution. Other further constraints can be applied to the connec-
tions to restrict them even more. They are often formulated in terms of a
third vector C which is displaced first by A and then by B. The result is
compared to the vector obtained by the commuted displacements, B then A.
If the results of the two displacements of C are of the same length, the space
is Riemannian; if the results are equal (for all of the space and all pairs of
displacements), the space is Euclidean. For Weylian geometry, the connec-
tions are assumed symmetric; the two displaced vectors might have different
lengths and different directions. A more general theory involving an asym-
metrical connection may be needed in a unified field theory but should be
developed as the physical structure becomes apparent (Einstein, 1950,
Appendix II).

2Weyl, (1952), Chap. 2; Dirac (1973).
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If the connections are chosen according to the Riemannian prescrip-
tion,

PA — }\ — -)\-rl agrv agﬂf _ agpu
L { }_g 2(ax“+8x” o (2)

then the T ,f‘,, are intrinsically symmetrical but there is insufficient space for
the electromagnetic potential.

With the structural change accompanying Weylian connections, the
two-world concept of Weyl becomes relevant (Weyl, 1952, Sec. 35). One of
these worlds consists of a “natural geometry,” which corresponds to the
intuitive, classical macroscopic world. A different world or metaphysical
view on the same observations is the “world geometry,” which corresponds
to the detailed structure, inner workings, and physical-mathematical causes
of the existence of the “natural geometry.” Any sort of laws might be
supposed for the microscopic “world geometry,” as it is, by definition,
inaccessible directly. Its justification lies in the success of any attempts to
explain physical laws that might be formulated using it. Such an epistemo-
logical extension occurs often in physics, although it is not always explicit.
None of the known fundamental fields are directly observable and all are
created for the purposes of deducing more tangible effects. Weyl’s “world
geometry” or microscopic world is an appropriate place in which to define
and claim existence for quantum trajectories. This microscopic world is
geometrical and these trajectories, although not directly observable, can be
conceptually useful.

Because of the two geometrical levels, a notational aid is used to mark
quantities which refer more to one or the other of them. Quantities with
dots (Adler et. al., 1965, Chap. 13) refer to the macroscopic world and
follow, in that approximation, known macroscopic laws. Quantities without
dots are part of the world geometry and, although they may obey known
physical laws, they are part of this different structure. The separation is not
completely unique nor are both versions of a quantity always used. Some
symbols are useful for both geometries.

The contravariant coordinates x* are unique and common to both
geometrical levels. The auxiliary Riemannian metric g,, is very useful to
define the way an observer would measure some macroscopic property of a
trajectory, possibly either a curvature or a probability distribution. This
tensor is not conceptually equivalent to the tensor g,,, which involves a
particular particle alone.

The microscopic quantities y, 4, g,, must be combined into coeffi-
cients of connection. The way to do this is suggested in Weyl’s work.
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Among the things that Weyl studied was the meaning (or absence of
meaning) of the absolute scale of the metric tensor. He argued that for any
arbitrary function A(x), the two metrics g,,(x) and A(x)g,,(x) should be
physically the same for a fixed coordinate space. There is no way to observe
the absolute magnitude of g,, using conventional nonquantum measure-
ments, only the relative direction of four-vectors can be converted into a
number.

Weyl configured his connections so that functional multiplication of
g,,(x) would be allowed mathematically but only if another vector, included
in the connections, was changed simultaneously. This vector, ¢,, has proper-
ties very much like the electromagnetic potential. The gradient part of this
electromagnetic potential would change to compensate for changes in the
“recalibration” of g,,. In this way at least the two fields were combined into
one unit, the connections; and any equation, expressed in terms of the
connections or other proper combinations of the two fields, would be
invariant under this process of recalibration or gauge transformation. Gauge,
to Weyl, came from the gauging properties of the metric tensor. The
connections, which are the fundamental quantities of geometry, would
remain the same and would allow a gauge transformation for mathematical
convenience.

To develop the connections for all three fields, some changes in
physical interpretation are appropriate. The quantum field corresponds
loosely to the overall gauge, which according to Weyl is unobservable. That
is, if g , were multiplied by a function A(x), and no compensating change
were made in the other fields, the resulting change in the connections would
cause physical effects equivalent to a change in the wave function. The
absolute magnitude of g,, has, in combination with the other quantities in
the connection, some physical significance. Such a change would have to be
inferred, just as is done in quantum mechanics, from statistical measure-
ments of probability densities.

As was shown by Weyl, to allow canceling changes in the fields g,, and
P, the connections must have the form

Th= { fx} +68%, +80%, —g,,0° (3)

The transformation properties of this quantity and the invariant tensors that
can be generated from it correspond exactly with electromagnetic theory
insofar as it is possible to tell. What is not worked out in Weyl’s early
papers is the exact relationship of ¢, to the electromagnetic potentials.

An extension of the connections of equation (3) can be made by using
the usual quantum transformation between the electromagnetic field and
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wave function. This brings the wave function into the structure quickly and
in the simplest possible correct way:

rﬂz{'B }+D,ﬁ (4)

(24 wy
for which

DE =8F(¢, —Iny|,)+85(¢,~In¢|,) g, (¢# ~Iny|#) (5)

This application of the minimal substitution anticipates the relationship
of ¢, to 4, defined by equation (29). The vertical bar is defined in equation
(11) and indices can be raised and lowered by the tensor g,,. With this form
for the connections, mathematical development can begin.

3. THE MATHEMATICS OF WEYL’S THEORY®

As in general relativity, arbitrary coordinate transformations are al-
lowed which can be expressed in terms of the contravariant coordinates as

XM =fH(x") (6)

(Greek indices extend over the four dimensions of space-time.) Tensors,
which form a class of important physical quantities, must, by definition,
transform according to a specific law. A tensor of the general form

T.. * .. (xP)becomes T . * .  (x*) at the transformed point x# and
is given by
, 9x’* 9x*
4 2 ﬁ - T B o e 8 e s 8 b m——— s s
Y AU v---(x ) r.”. p---('x ) ax’ ax” (7)

Tensors can be generated from other tensors by covariant differentiation.
The coefficients of connection defined earlier will describe the behavior of
the basis vectors when displaced by an infinitesimal amount and are needed
to give the full effect of the differentiation.

The coefficients of connection are not tensors but transform according
to a different law:

[# =TA ax® 9x° ax® 3% oxP ax”
By TPIOX* 9x” 3x*  0xPoxT ox* dx”

(8)

3Weyl (1952), Chap. 2.



Geometrical Derivation 463

This law is the same as for the Christoffel symbols { u’j} hence the additional

Weyl contribution to the coefficients of connection Dﬁ is a tensor.

The covariant derivative of a vector field can be defined in terms of
these quantities by .

v,
_ e
Vp,lv_ 9x” —rvaﬁ (9)

The first term on the right represents the intrinsic change in the field while
the second term represents the effect of the change in coordinate basis
systems. The generalization of this differentiation to the multi-index tensors
is analogous to Riemannian geometry except that the metric tensor itself has
nonzero covariant derivative due to the terms in ¢, and y in the connections.
A direct application of (9) to each index of g,, gives (Eisenhart, 1972, Sec.
30)

guvlﬁzzguv(qbﬁ—ln\l/'ﬂ) (10)

Of course,
ln¢|ﬁ=—z—)—ln¢ (11)
axB

The covariant derivative of a scalar field still equals the partial derivative.
Weyl’s connections affect the way the basis vectors change at proximate
points and not the intrinsic variation of fields.

In Section 8 a velocity vector field is derived uniquely from a given set
of coefficients of connection. Because the equation of motion comes from
the connections alone, displacements of the actual particle for the possible
purpose of measuring or observing the connections is not physically al-
lowed. The extended connections only make physical sense if they are
placed wholly within the microscopic “world.” They can only be observed
by implication. The motion of the particle is so strongly constrained by the
connections that it is impossible to discuss physical changes in direction of
the particle without a change of connections. In spite of the nonmaterial
nature of the space, it is helpful to be able to describe and use a structure
defined by the connections as if it were an object.

As mentioned earlier, a vector displaced around a small loop and
compared to itself, need not agree in either length or direction with itself
before displacement. The various changes placed upon the vector can be
said to come from different parts of the connections. To see the effect of the
fields, one simply displaces a vector along a curve and studies the character
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of the lowest-order effect. The mathematical behavior can be used to
separate the three fields.

(1) The Gravitational Field. The tensor 8,, has the same effect as the
tensor ¢,, of the Riemannian world. Turning off the quantum and electro-
magnetic field by setting ¢, =0, ¢ =1 leaves Weyl’s connections equal to the
Christoffel symbols.

(2) The Electromagnetic Field. The gravitational field and quantum
field can be turned off by setting

1
. = -1
8uy =My = 1 (12)
-1

and Y =1, respectively. The remaining “electromagnetic-Euclidean” connec-
tions cause only a relative change in length of a vector. Since distance is
integrable in the external space, £,, can be used to observe the effect of the
displacement (Adler et al., 1965, p. 403):

8|V|? 28(V“g,“,V”):2g'”,,V“|BV”8xB =28, V"V d? (13)

for displacement 8x#. In simple notation, the length ¥ of a vector changes
by

oV

¢* measures the linear fractional coefficient of change in length. Since ¢ is
presumably arbitrary, it is not an exact differential and the integrated effect
may depend on the path that is taken to the displaced point. This is true
even when observed with g,,. The property of nonintegrability is necessary
to produce the effects of the magnetic field.

(3) The Wave Function. The logarithmic derivative Iny|, has, except
for sign, the same effect as the electromagnetic potential. It is always
integrable, so that an expression of the form

w__%

== (15)
holds in the absence of an electromagnetic field [London, 1927, equation
(8)]. The length of the displaced vector then has a unique size relative to the
wave function. ¢ remains a simple scalar field.
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4. GAUGE TRANSFORMATIONS

Usually a gauge transformation is a change of the field variables
depending on arbitrary functions which leave a physical law invariant. The
best known of these is the classical electromagnetic gauge transformation
for which the electromagnetic potential is changed according to

4,(x)=4,(x)+B,(x)

Of course, if the electromagnetic field and the associated forces are to be
invariant, then the vector B, must be equal to the gradient of some scalar
function. In a similar way, the gauge structure of this theory involves
transformations of the fields which leave certain quantities invariant. A
minimum requirement is that the connections should be unchanged. A
gauge transformation affects neither the geometrical structure of the space
nor the coordinates x*. In this way, physical quantities derived directly from
the connections will have the correct gauge properties. There are two
independent gauge transformations that are used implicitly in Section 2 to
derive the connections. They can be parameterized by two functions of the
coordinates, f=f(x*) and h=h(x"). The first is the quantum mechanical
gauge transformation which is usually associated with the minimal substitu-
tion (Weyl, 1950b, p. 100)

q&,{‘—‘%—lnh(u

16
=k (16)

The other gauge transformation, first discussed by Weyl (Weyl, 1950a,
p. 207) is associated with his process of recalibration:
8o =1 8y
(17)
o :¢M+1nf|p

These two can be combined formally to give a more general transformation:

2 =8
¢, =9, +In(f/h)|, (18)
Y'=hy

Note that setting f=h=d gives a transformation which does not involve the
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electromagnetic potential;

gp,v :dzgp,v
y=dy (19)
6, =0,

All of the transformations (16)~(19) are identical invariants of the
connections (4). Two of these are not physically important. Since it is shown
later that ¢,, for physical reasons, should be pure imaginary, 4 in (16)
should be a phase function of the form "™, Since g,, should remain real,
(17) and (18) should not be used in general. The inferred transformation
(19) is allowed for real 4; only (16) and (19) are usually used when a change
of gauge is needed. The magnitude of the wave function transforms with the
real metric tensor and the phase of the wave function transforms with the
electromagnetic vector potential.

The additional transformations (17) or (18) are present as formal
invariants. Precise limits of the gauge group can be defined by choosing an
arbitrary connection I‘f,, and ascertaining what possible fields can make it
up. Let there be a connection given in terms of three fields g,,, ¢,, ¥ and
suppose that three other fields g, ¢,, ¥"are sought which might produce the
same numerical values of I’,ﬁ,. Firstly, gauge transformations (16) and (19)
can be used to eliminate both wave functions in so far as they contribute to
the connections. New fields g, ¢F and g3, ¢,* are generated. Since 9, 1s
pure imaginary, the tensor D'f‘,, is also pure imaginary. Dropping asterisks,
the imaginary parts of the two tensors must be equal,

D) =D} (20)

as well as the real Christoffel symbols:

A A
{HV}:{W’} @)
The equality of the two contracted terms DM",, and Du’,f‘ shows the equality of
¢, and ¢,.

The equality of the two metric tensors g,, and g,, does not follow from
the equality of the Christoffel symbols. The two tensors need only be related
by an affine transformation. Such a transformation is equivalent to a
subgroup of the group of all coordinate transformations. The total of gauge
transformations which cannot be produced by equivalent coordinate
transformations is given by (16) and (19).
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Some of the simplicity of geometrical interpretation is lost when the
vector potential and the connections become complex. Fortunately, the
mathematics behaves like the original (all real) Weyl theory. This similarity
is suggestive and useful. Because all of these quantities belong to the “world
geometry” of Weyl, the complexification is not prohibited by any physical
arguments. The explicit use of complex numbers in the coefficients of
connection cannot be avoided because of the important part they play in
quantum mechanics.

5. USEFUL TENSORS

The important physical tensors for single-particle motion can be con-
structed from the generalized Riemann curvature tensor. If a vector V* is
displaced around an infinitesimal parallelogram dx* dx" it will be changed
relative to its starting value by an infinitesimal amount. This change when
calculated to first order provides the definition of the curvature tensor. It is
entirely analogous to the curvature tensor of general relativity:

8V = (VP = VP, )dx” dxt = RE, V" dx dx’ (22)
Because a linearly independent set of pairs dx” dx* can be chosen,

RE VTZVBIW~V”|W (23)

e

Since V" is an arbitrary vector field, the right-hand side of this can be
expanded and the vector field eliminated:

o' or#
_ T pp r -
Rﬁ,,p = o —5x—" +I‘£I’m —I‘ﬁ,l‘pu (24)

When written in this form, the gauge invariance of RE,,p is certain since it
depends only on I'2.

The physically important contraction with respect to the first lower
index relates to the change in length of a vector for a small displacement. It
can be calculated easily from (24):

— a¢P a¢v —

n

wop ax’ W" vp (25)

The symmetry properties of the H,, tensor are correct for an electro-
magnetic field. It is imaginary when measured in geometrical units because
¢, is imaginary.
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The contraction of the Riemann tensor between the first and third
indices or first and fourth indices gives a generalized Ricci tensor,
RS =0QFf —Df| +DE|, —DED;, +DED], (26)
where Qf,p is the Riemann tensor formed from the Christoffel symbols of
the tensor g,,. The contraction can be found in covariant form:

R, =R, =024, _‘;bulp —ép | —gupévlv +2§5ﬂ‘5p —2gﬂp&),,€>” (27)

where Q,, =Q,,, and ‘Z’:‘i’u —Iny|,. R,, is Hermitian. Note that with this
definition of covariant derivative, the tensor g,, does not commute with the

vertical bar. Equation (10) must be used.

6. FIELD EQUATIONS FOR g, ¢,, AND y

Einstein’s gravitational field equations may be used for the purpose of
this article to supply the macroscopic tensor g,,. Avoiding the complexity
associated with this calculation, we assume that it is a known, given
quantity. Measurement of this tensor involves many particles, either as
components of the clocks which measure the time or as absorbers and
emitters of the measuring light beams. A measurement of g, thereby always
involves a number of quantum states and is not a fundamental one-particle
quantity.

Without a complete microscopic gravitational theory, an assumption
involving multiple quantum states is needed to define the one-particle
connection from g,,. It should be possible with a more comprehensive
theory to justify the use of g,, by considering collections of states. In this
approximation, g,, must introduce the gravitational effects and, if these are
to be the correct gravitational effects, the tensor g,, must be related to the
tensor ¢,,. Certainly, if g,, =4,,, the correct force law will be obtained;
however, in light of the gauge transformation (19), any assumption g,, =
§2g'u,,, in which £ is an arbitrary function of coordinates, will restrict the
possibilities for the functions I‘f; in exactly the same way. It is often
convenient to let g,, =¢,,, but the more general form is more useful for the
interpretation of Section 9. More importantly, if the gauge in which y=1 is
used, the £ factor must be allowed.

The electromagnetic vector potential can be specified by using the
contracted Riemann—Weyl tensor H,,. Maxwell’s equations can be adapted
to this tensor and are given by

N V- I
3 | Hop 8" (=) /*| =4miajt (28)
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The raising of indices is done in the Riemann space of the observer. The
units are cgs and have been chosen so that j* is the particle current density
as measured for particles of electromagnetic interaction a=e2. Since j* is
real, ¢, can be selected pure imaginary so that it is related to the usual
vector potential 4, by

A4,=9,/ie (29a)

These units are chosen so that equation (35) below will appear in normal
form. The geometrical tensor H,,, is related to the physical tensor F,, by the
same factor:

F,=H, /ie (29b)

The usual equation of the wave function in quantum mechanics is made
in a fixed gauge much as an actual calculation of the action function is
made in a fixed gauge. The larger gauge group of this theory can be kept if
it is understood that additional constraints on the fields are needed to
specify a particular gauge.

Suppose then that particular solutions for 4, and g,, are chosen. Since
{ is a complex scalar, one complex equation wiil suffice for its calculation.
Weyl has suggested that the generalized scalar of curvature given by

R=R,,g" (30)

could be set equal to a constant (Eddington, 1975, Sec. 89). In his discus-
sion, no further interpretation is given except to say that this sets some
absolute gauge or standard of length for space-time (Weyl, 1923, p. 215). To
Weyl, the absolute gauge was not physically important; however, because of
the relation of || to the size of g,,, the absolute gauge (of Weyl) should be
important for quantum mechanics. An equation based on this curvature
scalar might be appropriate. Weyl realized a problem, which is that R, g""
is not gauge invariant (Weyl, 1952, p. 134). The interpretation is in difficulty
if the gauge transformations (16) and (19) are to be physical invariants. If,
however, the apparent curvature scalar, as méasured from the external
Riemannian space, R,,§"", is set equal to a constant, these formal difficul-
ties are avoided. Setting this equal to a constant results in a gauge invariant
constraint on the space as defined by the coefficients of connection. In a
fixed gauge, this constraint can be expressed as a differential equation for
the wave function. Let then the gauge be restricted by g,, =¢,, and suppose
that the scalar formed by contraction of the Ricci tensor is the constant
—6m? in which m is the mass of the particle with wave function . The
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resultant equation is

- .5 6 0 ~ i
_6m2:R‘ng" :R’”gl" :R_—(__g_jl_ﬂ'a?[/(_g)l/2¢p]+6¢p¢p
(31)

in which g=det(g,, ), R is the Riemannian curvature formed with respect to

" the metric g,“,, and once again q) =¢, —Iny|,. Substituting for ¢, and
rearranging gives

_{, 13y _ 1y
"’”2‘(‘1’” ‘paxﬂ)("’“ zpax)

19 /2 “_la_xlx
— (_g)‘/25x7 [(—g) (¢ v ax# )

which in operator notation is

NS E RN TSR

Restoring units according to (19) so that

B

0 omeor( .
2 | Fop 8" (—8)"*] =4ng* (34)

makes equation (33) into

L3 RS S B S IR PN VZY B
(m2+6)¢—(_.g)'/2(i8x" eA#)( g) (iax

—eA* )z[/ (35)
u
This is the Klein—Gordon equation (Bjorken and Drell, 1964, pp. 5-6)
including the minimal substitution for the electromagnetic potential except
for the small term R/6 (Penrose, 1964). If R is macroscopic in size, say
about 1 cm™2, the perturbation to the mass is Am/m=R/12 m?)~10 "%,
which is well beyond any experimental tests even with this conservatively
high value for R. This leaves m?y as the dominant term on the left side of
equation (35). The mathematics of quantum mechanics is equivalent to the
study of spaces of constant scalar curvature.

It is indeed interesting that out of a complex of nonlinear equations,
there should be found an exact linear equation such as (35). The nonlineari-
ties are all contained in the way in which the electromagnetic and gravita-
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tional terms enter into the equation. In this sense quantum mechanics is
simply the largest piece of Weyl’s theory that can be represented by a linear
field equation. Even though it combines the physically very dissimilar phase
and amplitude, it is not especially surprising that it should be discovered
before difficult nonlinear equations that include gravitation and elec-
trodynamics.

Solutions of this equation are now well studied and the interpretations
are for the most part dependent on the equation itself. Many applications
depend on known interactions of the electromagnetic field with the par-
ticles. Equation (35) can not be verified easily without recourse to this
interaction.

The derivation of equation (35) is the basic result of this article. The
remaining sections concern extensions of this interpretation to give a
consistent geometrical explanation.

7. THE CLASSICAL FIELD EQUATIONS

Usually the classical limit is found by eliminating terms proportional to
A. In particular, the last two terms of equation (32) are proportional to A
and %2, respectively, when the variables are expressed in macroscopic units.
These terms are negligible in the classical limit; unfortunately, they are
necessary for the invariance of equation (32) under the coordinate transfor-
mation (6) as well as the gauge transformation (16) through (19). As a result,
it is not possible to make the classical correspondence by discarding these
terms and yet preserve the geometrical invariances of the theory. There is no
gauge and coordinate transformation invariant classical limit for this Weyl-
type theory. The classical limit must be described as an idealization of a
mathematical structure which is in fact irreplaceably quantum mechanical.

The proper way to see the classical limit is to accept the fact that A is a
nonzero constant and make appropriate physical assumptions to justify that
the solution of equations (28) and (32) are close to another set of equations,
namely, the equations of Jacobi (Landau and Lifshitz, 1962, p. 68). It is not
possible to assume nor necessary to prove that the field variables are in fact
solutions of the classical equations. They are only approximate solutions.

Assuming in a fixed region of space that the variations in the field are
sufficiently slow so that the last two terms in equation (21) are negligible
and supposing that the gauges are selected so that A, is real and g,, =§g,,,
then making the substitutions ¢ =¢* and ¢, =ied, gives

(%i—eA#)(i’g—eAﬂ):w (36)
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The elimination of higher-order terms in equation (21) has also eliminated
all explicit reference to complex numbers. In the classical limit, S is real up
to an arbitrary additive complex constant.

Having derived this field equation, a complete description of a particle
requires an equation of motion; fortunately, there is a natural vector
contained in the connections which gives the correct velocity field in the
classical limit.

8. THE LORENTZ FORCE LAW

The concept of trajectories for both quantum mechanical motion and
classical motion is discussed in detail in an earlier paper (Galehouse, 1981).
Once the wave function or action function has been chosen, the equations of
motion of the particle having that wave function are first order in analogy
with Hamilton-Jacobi theory. The velocity vector usually chosen is the
quantity 95/dx* —ed, at least for the classical case. A natural gauge
invariant quantity must be found which will equal this at least under
circumstances when the classical approximation holds. Such a quantity is
the vector formed by contraction from the connections (Dirac, 1937, 1951,
1952; London, 1961, Sec. 10)

Vu:ImI‘éiLZIm(%{li}—qbn-f-lnmﬂ) (37)

The imaginary part of the vector has been taken to keep the trajectories real,
a process which corresponds to the reseparation of the phase and amplitude
information which is generated by solving the field equations.

The velocity vector (37) can, in fact, be simplified, especially for
classical motion. In the gauge g,, =¢,, the Christoffel symbol is pure real
and almost always very small. When the wave function can be written in
terms of a real action e’S =y, the velocity reduces to the expected:

V”':—a_j(-‘: -—eAF (38)

Using the gauge transformation (16) written in terms of A4, and S to
eliminate S from equation (36) gives

A4,8MA,=m?/e* (39)

These gauge transformations work for field and motion equations alike
and thereby S is also eliminated from (38). A normalized velocity can be
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defined by

—1/2

U, =V,(Vi¥sg™) (40)

and with the help of (39) reduces (38) to the simple formula (London, 1961)

dx* e
—_— — AR
PR mA (41)
A, is part of a non-Riemannian space. In general, the particle still has
an apparent acceleration because 4,, is nearly arbitrary in the classical limit.
This acceleration, due to the space itself, is usually explained as the effect of
the Lorentz force. The particle does not travel on a geodesic as would be
determined by the metric of the observer but has an acceleration given by
the absolute derivative of equation (41) (Synge, 1971, p. 4):
d ZX” _ i
dsz m o+

B dA4 , B
dx —i( r )dx (42)

a5 o\ ges e |

8

Explicit reference to I“ﬁ can be eliminated because A* satisfies the field
equation (39). Taking the absolute derivative of this equation along the path
of the particle, we obtain

04
0=24, |44’ =Aﬁ(87—r,fﬁ p) (43)

or, using the equation (41),

dxcB . 04 axP

ds F P 3xk ds (44)
Substituting (44) into (42) gives
d*x d4, 94 B 8
B 0dp \dx” _ e F BdL (45)
ds? 9 xﬂ xt | ds  m MR ds

This is the Lorentz force law and it is gauge invariant as written. It is not
correct when quantum effects are important since these terms have been
dropped during the derivation of equations (36) and (38). In spite of the
problems of invariance, a Weyl theory can give the correct classical force
law when the right approximations are used.
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It is appropriate to review why the nonintegrability of length cannot be
observed by direct experiment. Once a set of connections is chosen, the
particle trajectory through a given starting point is unique. It is never
possible for a closed loop to be formed from legal trajectories—and a real
particle can follow no others. The interpretation of these equations is deep;
they are not defined in terms of the motion, they define the motion.

9. INTERPRETATION OF THE PROBABILITY DENSITY AS A
SUM OF TRAJECTORIES

The concept of probability density can be expanded because the
particles have trajectories. (See contrasting viewpoints given by Parks, 1964;
Einstein, 1932; Einstein et al., 1935; Gottfried, 1966, Sec. 2; Feynman,
1965; etc.). The probability current vector

' 8 9
Jﬂz-i—l;n—[xp*(i-a—x;—eA")¢—¢(zg+eA”)¢*] (46)

M

except for normalization, is equal, in the gauge where g,, =¢,, to the vector
field defined by equation (37). Taking the imaginary part in (37) corre-
sponds to the conjugation and subtraction used in (46). The multiplicative
factor used is required by the field equation and sets the density so that the
current is conserved.

To reproduce this known quantum law from the trajectories, some
initial distribution must be assumed. In the infinitesimal limit, a small
uniform sphere of particles wili move along a trajectory and change its
projected area as the lines of motion become more and less dense. Each of
the particles in this sphere must be considered a member of an ensemble
element, the total of these elements belonging to one wave function. Any
arbitrary initial density will change along a trajectory so as to be exactly
proportional to the density calculated by (46) simply because (46) is
conserved. The constant of proportionality relating the initial density to the
calculated value will remain the same. To explain the relative normalization
of probability density at spacelike separated points requires some recourse
to physical argument. Global probability or interference requires coherence
and that implies that the ensemble particles travel from a virtual point
source. Such a source, whether accessible in practice or not, provides a
unique place to relate the various local densities to each other. Equation (46)
is therefore the global completion of the effect of equation (37). It can be
derived from (37) by requiring a multiplicative factor which makes the
current density vector a conserved current density over the region in which
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¢ 1s defined. This globally defined probability density can be given a
geometrical interpretation as a variation in the size of the microscopic
metric tensor g,,.

A simple example will illustrate this physical way to interpret a gauge
transformation. In Figure 1, the source 4 emits particles which are dif-
fracted by the small hole in the screen at B and then detected on the screen
C. Suppose that the source is small enough that the collection of wave
functions which are needed to predict the diffraction pattern are sufficiently
similar that the pattern is not seriously washed out. Further suppose that
the hole is small so that diffraction is significant and is macroscopically
observable on the screen. This will certainly happen if the hole is as small as
the wavelength. Suppose also that the screen is placed far enough from the
hole that the diffraction effects are no longer important near the screen and
the particles can be treated in the classical limit. Finally, suppose, at least
near the screen, that electromagnetic effects are not present and that the
distribution of particles depends only on the two fields ¢ and g,,.

Beginning in the fixed gauge g,, =§,,, let equation (35) be solved for
this arrangement so that the wave function is a known function of position.
In a macroscopic neighborhood of a point x* on the screen, the solution
may be approximated by the Taylor expansion:

S(x“):oéia+p“(xﬁ—x”) 47)

A B

Fig. 1. A simple diffraction experiment consists of a source A4, diffraction aperature B, and
detection screen C. The probability density is measured by counting the particles which arrive
at the screen within the region {.
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¢ and ¢ are real constants and p, is a real vector. The constants § and o
certainly cannot be found by Hamilton—Jacobi theory but are known from
the wave function since y=e'S,

In the nonrelativistic limit, the time dependence is nearly e /" and the
probability density, J,,, from (46) and (47) becomes

h=pyr=e (48)

and depends only on the zero-order coefficient o. The probability density is
not gauge invariant when expressed by equation (46). The gauge transfor-
mation (19) with d=e™° may be applied to give a new ¢’ and g’ with
Yy'*=1 everywhere on the screen. The amplitude part of the wave function
is transferred to the tensor g,

g, =e g, ¥=exp[i(¢+pp(x*—3"))] (49)

In this gauge, all variations in the particle density are due to variations
in the metric tensor g,,. The parameter o is called the conformal parameter
in differential geometry (Eisenhart, 1926). A conformal change is equivalent
to an isotropic expansion of the coordinate system. Since g,,x*x” is the
square of a length, the effective normalization factor for a length at some
point x* is e °. This rescaling of the local coordinate system does not
change the effective velocity of the particle as

dx _d(xe™°) dx

a d(e ) di (0

The effective cross-sectional area d does scale as e ~2° thereby giving the
correct dependence on the conformal factor. In this guage the probability
density variations come from equivalent variations in the metric tensor g,,.

The probability density can be interpreted as a scale change or confor-
mal change in the space in which the particle is moving. The lines of motion
are compressed or rarified by contractions or expansions in the metric
tensor.

The probability density is a direct geometrical concept depending on
the motion of particles along trajectories. Quantum mechanics produces
results very much like having an individual metric tensor for each particle of
the form [¢|g,,.

These two parts of the quantum mechanical wave function, the phase
and the amplitude, are related to each other only through the field equation
(35). Particle motion would be always classical if changes in velocity did not
imply other variations in particle direction and density.
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The probability density is the natural inherent density, characteristic of
the geometrical structure underlying the space in which the particles are
traveling.

10. CONCLUSION

One of the objects of this article is to develop certain epistemological
problems of fields and particles. The separation between a quantum field
and a classical field has been modified and simplified. A first-quantized
particle has become unessentially different from an unquantized classical
particle. And correspondingly, the trajectory of a first-quantized particle
can be defined reasonably and with a result that is not surprising relative to
a classical trajectory. This epistemology is augmented by the addition of the
possibility that field and motion equations might in whole or part be of
geometrical origin, or more simply, completely reducible to a geometrical
description. Such a description is presented here in part for quantum,
gravitational, and electromagnetic interactions. The close relationship of the
trajectories with the quantum field equation suggests that the source equa-
tions of the electromagnetic and gravitational fields may be of simple
geometrical origin as well. Certain proposals have been made, especially for
the electromagnetic field, viz., Einstein (1950), Appendix II. The straightfor-
ward question is, whether any of these geometrical theories, each containing
a correct element of the description of nature, can be put together in a
physically sensible way. Insofar as this can be done, a number of develop-
ments may be possible. As seen already, the mass has become a part of the
equations and not an intrinsic property of the particle. If physics is truly
geometric, then all experiments can be defined by trajectories alone and the
mass and interaction constants are part of the natural constraints on those
trajectories. This suggests an end to separation of kinematics and dynamics
and it also suggests that mass ratios and interaction constants might have
geometrical origins. A physically correct inclusion of proper source equa-
tions with comparable motion equations would be at least required. Present-
day quantum theories do not even provide the possibility of pursuing these
questions theoretically.

Certain specific ideas from the philosophy of quantum mechanics and
the philosophy of general relativity may need modification. A continuing
problem for theories of combined relativity and quantum mechanics has
been the conflict between the gravitational idea of a particle geodesic and
the quantum idea of an operator. These basic philosophies are different as
exemplified by the conflicting concepts of measurement. Many previous
attempts have proceeded to impose one structure on the other. The essential
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conclusion here is that it is possible to synthesize these two theories and to
put them together integrally without imposing one philosophy upon the
other. A number of deep connections between the two exist, and, if these
connections are relevant, any unified field theory that does not recognize
them may likely fail. For this synthesis, certain constraints must be placed
on the meaning of a general relativistic displacement and on the concept of
a metric for a quantum particle; but, these are part of the macroscopic
nature of general relativity and the microscopic nature of the quantum
theory.

A number of unresolved issues from Weyl’s work have been addressed.
A specific value for the electromagnetic constants has been defined as
opposed to simple arguments by invariance. The difference between natural
geometry and world geometry and the source of that difference as quantum
mechanics has been made more clear. Additionally, the probabilistic nature
of quantum mechanics is separated from a deterministic equation of motion.
An important addition to Weyl’s theories is the equation of motion which
allows the correct prediction of motion of charged particles including the
otherwise anomalous effects of the magnetic field.

A number of difficulties remain which can now be formulated. (1) One
can look for an explanation of the origin of the electromagnetic field source
equation. This might be by way of a Weyl-type theory or perhaps with a
structure similar to an asymmetrical connection. Very few past attempts
include quantum effects in the simple way they are described here. It is
possible that the inclusion of quantum effects in a simple way might
improve the cogency and relevance of electromagnetic—gravitational theo-
ries. (2) As mentioned earlier, combined geometrical equations of the field
and the motion may lead to predictions for the fundamental constants. (3)
The question of spin has not been attacked. The author believes that the
proper course is to ask how to integrate spin, quantum mechanics, general
relativity, and electrodynamics into a single geometrical structure without
imposing one set of ideas upon the others. (4) The problem of particle
creation has been avoided because it always seems to lead to the necessity of
handling infinite numbers of particles. Can this be simplified because the
motion has been separated from the statistics?

This list is not exhaustive and these problems are exceedingly deep and
solutions do not come quickly. A belief in the existence of solutions, even if-
irrational, is needed if answers are to be found. Certainly discussion of these
fundamental questions has not been concluded.
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